Задания
Версия для печати и копирования в MS Word
Задание № 230
i

Угол между плос­ко­стя­ми  альфа и  бета равен 30°. Точка B на­хо­дит­ся на рас­сто­я­нии  левая круг­лая скоб­ка 2 минус ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та пра­вая круг­лая скоб­ка см от плос­ко­сти  альфа и 2 см от плос­ко­сти  бета . Най­ди­те рас­сто­я­ние от точки B до пря­мой пе­ре­се­че­ния плос­ко­стей  альфа и  бета .

Спрятать решение

Ре­ше­ние.

Так как сумма углов четырёхуголь­ни­ка равна 360°, то угол B равен 150°. Найдём CD в тре­уголь­ни­ке CBD по тео­ре­ме ко­си­ну­сов: CD в квад­ра­те =CB в квад­ра­те плюс BD в квад­ра­те минус 2 умно­жить на CB умно­жить на BD ко­си­нус \angle B. Под­ста­вим и по­лу­чим, что CD= ко­рень из: на­ча­ло ар­гу­мен­та: 5 конец ар­гу­мен­та . Во­круг четырёхуголь­ни­ка ABCD можно опи­сать окруж­ность, так как суммы про­ти­во­по­лож­ных углов равны 180°. Из тре­уголь­ни­ка CBD найдём ра­ди­ус этой окруж­но­сти по тео­ре­ме си­ну­сов: 2R= дробь: чис­ли­тель: CD, зна­ме­на­тель: синус \angle CBD конец дроби =2 ко­рень из: на­ча­ло ар­гу­мен­та: 5 конец ар­гу­мен­та . По­сколь­ку угол ACB  — пря­мой, то он опи­ра­ет­ся на диа­метр, то есть AB=2R=2 ко­рень из: на­ча­ло ар­гу­мен­та: 5 конец ар­гу­мен­та .

 

Ответ: 2 ко­рень из: на­ча­ло ар­гу­мен­та: 5 конец ар­гу­мен­та .

Классификатор алгебры: 2.6. Рас­сто­я­ние от точки до пря­мой
Методы алгебры: Тео­ре­ма ко­си­ну­сов, Тео­ре­ма си­ну­сов