Задания
Версия для печати и копирования в MS Word
Задание № 338
i

Ре­ши­те урав­не­ние: \lg левая круг­лая скоб­ка 10x пра­вая круг­лая скоб­ка умно­жить на \lg левая круг­лая скоб­ка 0,1x пра­вая круг­лая скоб­ка =3.

Спрятать решение

Ре­ше­ние.

Ис­поль­зу­ем свой­ство ло­га­риф­ма:

 левая круг­лая скоб­ка \lg10 плюс де­ся­тич­ный ло­га­рифм x\left пра­вая круг­лая скоб­ка умно­жить на левая круг­лая скоб­ка \lg0,1 плюс де­ся­тич­ный ло­га­рифм x пра­вая круг­лая скоб­ка =3 рав­но­силь­но левая круг­лая скоб­ка 1 плюс де­ся­тич­ный ло­га­рифм x пра­вая круг­лая скоб­ка левая круг­лая скоб­ка минус 1 плюс де­ся­тич­ный ло­га­рифм x пра­вая круг­лая скоб­ка =3 рав­но­силь­но \lg в квад­ра­те x минус 1=3 рав­но­силь­но

 рав­но­силь­но \lg в квад­ра­те x=4 рав­но­силь­но со­во­куп­ность вы­ра­же­ний де­ся­тич­ный ло­га­рифм x=2, де­ся­тич­ный ло­га­рифм x= минус 2 конец со­во­куп­но­сти . рав­но­силь­но со­во­куп­ность вы­ра­же­ний x=100,x=0,01. конец со­во­куп­но­сти .

 

Ответ: (0,01;100).

Классификатор алгебры: 5.1. Урав­не­ния пер­вой и вто­рой сте­пе­ни от­но­си­тель­но ло­га­риф­ми­че­ских функ­ций