Задания
Версия для печати и копирования в MS Word
Задание № 535
i

Най­ди­те зна­че­ние вы­ра­же­ния  ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 5 пра­вая круг­лая скоб­ка 180 минус ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 5 пра­вая круг­лая скоб­ка 60 минус ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 5 пра­вая круг­лая скоб­ка 10 и срав­ни­те его с 0.

Спрятать решение

Ре­ше­ние.

Вы­чис­лим:

 ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 5 пра­вая круг­лая скоб­ка 180 минус ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 5 пра­вая круг­лая скоб­ка 60 минус ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 5 пра­вая круг­лая скоб­ка 10 = ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 5 пра­вая круг­лая скоб­ка 3 минус ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 5 пра­вая круг­лая скоб­ка 10 = ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 5 пра­вая круг­лая скоб­ка дробь: чис­ли­тель: 3, зна­ме­на­тель: 10 конец дроби .

Так как 0 = ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 5 пра­вая круг­лая скоб­ка 1, срав­ним  ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 5 пра­вая круг­лая скоб­ка дробь: чис­ли­тель: 3, зна­ме­на­тель: 10 конец дроби и  ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 5 пра­вая круг­лая скоб­ка 1. Ос­но­ва­ния ло­га­риф­мов равны, срав­ним их ар­гу­мен­ты:  дробь: чис­ли­тель: 3, зна­ме­на­тель: 10 конец дроби < 1, зна­чит,  ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 5 пра­вая круг­лая скоб­ка дробь: чис­ли­тель: 3, зна­ме­на­тель: 10 конец дроби мень­ше 0.

 

Ответ:  ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 5 пра­вая круг­лая скоб­ка дробь: чис­ли­тель: 3, зна­ме­на­тель: 10 конец дроби ; мень­ше.

Классификатор алгебры: 1.6. Вы­чис­ле­ние ло­га­риф­мов, 2.5. Срав­не­ние чисел