Задание № 799 i
Площадь осевого сечения усеченного конуса равна 144, а диагонали осевого сечения взаимно перпендикулярны. Площадь верхнего основания конуса в 9 раз меньше площади нижнего. Найдите объем конуса, основание которого совпадает с меньшим основанием данного усеченного конуса, а вершина — с центром большего основания.
Спрятать решениеРешение. Осевое сечение усеченного конуса — равнобедренная трапеция AA1B1B, в которой основания являются диаметрами оснований конуса, Точки O и O1 — середины оснований AB и A1B1 соответственно.
Поскольку площадь верхнего основания конуса в 9 раз меньше площади нижнего, имеем:
Пусть
K — точка пересечения диагоналей трапеции
AA1B1B. Заметим, что треугольники
AKB и
B1KA1 подобны по двум углам. Из подобия следует, что
Поскольку
(в равнобедренной трапеции диагонали равны), то
и
Значит, треугольники
AKB и
B1KA1 — равнобедренные прямоугольные. Отрезок
OO1 — высота трапеции и высота усеченного конуса. Этот отрезок будет проходить через точку
K, поскольку точка пересечения диагоналей равноудалена от боковых сторон. Треугольники
KO1B1 и
KOB — равнобедренные прямоугольные, значит,
и
Следовательно, полусумма основания данной трапеции равна ее высоте. Выразим площадь сечения:
По условию
значит,
Найдем радиусы оснований усеченного конуса:
Поскольку
имеем:
значит,
Таким образом, объем конуса равен
Ответ: 36π.
Ответ: 36π.
Аналоги к заданию № 789: 799 Все