Задания
Версия для печати и копирования в MS Word
Задание № 49
i

Ре­ши­те урав­не­ние  ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 3 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка 3 минус x пра­вая круг­лая скоб­ка плюс ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 3 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка 4 минус x пра­вая круг­лая скоб­ка =1 плюс 2 ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 3 пра­вая круг­лая скоб­ка 2.

Спрятать решение

Ре­ше­ние.

Пред­ста­вим 1 как  ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 3 пра­вая круг­лая скоб­ка 3, а 2 ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 3 пра­вая круг­лая скоб­ка 2, как  ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 3 пра­вая круг­лая скоб­ка 4. Тогда урав­не­ние при­об­ре­та­ет сле­ду­ю­щий вид:

 

 ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 3 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка 3 минус x пра­вая круг­лая скоб­ка плюс ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 3 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка 4 минус x пра­вая круг­лая скоб­ка = ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 3 пра­вая круг­лая скоб­ка 3 плюс ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 3 пра­вая круг­лая скоб­ка 4 рав­но­силь­но ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 3 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка 3 минус x пра­вая круг­лая скоб­ка плюс ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 3 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка 4 минус x пра­вая круг­лая скоб­ка = ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 3 пра­вая круг­лая скоб­ка 12 рав­но­силь­но

 

 рав­но­силь­но со­во­куп­ность вы­ра­же­ний 3 минус x боль­ше 0,4 минус x боль­ше 0, ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 3 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка левая круг­лая скоб­ка 3 минус x пра­вая круг­лая скоб­ка левая круг­лая скоб­ка 4 минус x пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка = ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 3 пра­вая круг­лая скоб­ка 12 конец со­во­куп­но­сти . рав­но­силь­но со­во­куп­ность вы­ра­же­ний x мень­ше 3,x мень­ше 4,\ левая круг­лая скоб­ка левая круг­лая скоб­ка 3 минус x пра­вая круг­лая скоб­ка левая круг­лая скоб­ка 4 минус x пра­вая круг­лая скоб­ка =12. конец со­во­куп­но­сти .

 

Решая по­лу­чив­шу­ю­ся си­сте­му по­лу­ча­ем: си­сте­ма вы­ра­же­ний  новая стро­ка x в квад­ра­те минус 7x=0,  новая стро­ка x мень­ше 3 конец си­сте­мы . рав­но­силь­но x=0.

 

Ответ: 0.

Классификатор алгебры: 5.1. Урав­не­ния пер­вой и вто­рой сте­пе­ни от­но­си­тель­но ло­га­риф­ми­че­ских функ­ций